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Preface

A sophisticated analysis is wasted if the results cannot be
communicated effectively to the client.
Reese [4, p. 201]

Our purpose in writing this book is to combine a good applied introduction to
generalized linear models (glms) with a thorough explanation of the theory
that is understandable from an elementary point of view.

We assume students to have basic knowledge of statistics and calculus. A
working familiarity with probability, probability distributions and hypothe-
sis testing is assumed, but a self-contained introduction to all other topics is
given in the book including linear regression. The early chapters of the book
give an introduction to linear regression and analysis of variance suitable
for a second course in statistics. Students with more advanced backgrounds,
including matrix algebra, will benefit from optional sections that give a de-
tailed introduction to the theory and algorithms. The book can therefore be
read at multiple levels. It can be read by students with only a first course in
statistics, but at the same time, it contains advanced material suitable for
graduate students and professionals.

The book should be appropriate for graduate students in statistics at either
the masters or PhD levels. It should be also be appropriate for advanced
undergraduate students taking majors in statistics in Britain or Australia.
Students in psychology, biometrics and related disciplines will also benefit.
In general, it is appropriate for anyone wanting a practical working knowledge
of glms with a sound theoretical background.

r is a powerful and freely available environment for statistical computing
and graphics that has become widely adopted around the world. This book
includes a self-contained introduction to R (Appendix A), and use of r is
integrated into the text throughout the book. This includes comprehensive
r code examples and complete code for most data analyses and case studies.
Detailed use of relevant r functions is described in each chapter.

A practical working knowledge of good applied statistical practice is de-
veloped through the use of real data sets and numerous case studies. This
book makes almost exclusive use of real data. These data sets are collected in
the r package GLMsData [1] (see Appendix A for instructions for obtaining

vii



viii Preface

this r package), which has been prepared especially for use with this book
and which contains 97 data sets. Each example in the text is cross-referenced
with the relevant data set so that readers can load the relevant data to follow
the analysis in their own r session. Complete reproducible r code is provided
with the text for most examples.

The development of the theoretical background sometimes requires more
advanced mathematical techniques, including the use of matrix algebra. How-
ever, knowledge of these techniques is not required to read this book. We have
ensured that readers without this knowledge can still follow the theoretical
development, by flagging the corresponding sections with a star * in the*
margin. Readers unfamiliar with these techniques may skip these sections
and problems without loss of continuity. However, those with the necessary
knowledge can gain more insight by reading the optional starred sections.

A set of problems is given at the end of each chapter and at the end of the
book. The balance between theory and practice is evident in the list of prob-
lems, which vary in difficulty and purpose. These problems cover many areas
of application and test understanding, theory, application, interpretation and
the ability to read publications that use glms.

This book begins with an introduction to multiple linear regression. In
a book about glms, at least three reasons exist for beginning with a short
discussion of multiple linear regression:

• Linear regression is familiar. Starting with regression consolidates this
material and establishes common notation, terminology and knowledge
for all readers. Notation and new terms are best introduced in a familiar
context.

• Linear regression is foundational. Many concepts and ideas from linear
regression are used as approximations in glms. A firm foundation in
linear regression ensures a better understanding of glms.

• Linear regression is motivational. Glms often improve linear regression.
Studying linear regression reveals its weaknesses and shows how glms
can often overcome most of these, motivating the need for glms.

Connections between linear regression and glms are emphasized throughout
this book.

This book contains a number of important but advanced topics and tools
that have not typically been included in introductions to glms before. These
include Tweedie family distributions with power variance functions, saddle-
point approximations, likelihood score tests, modified profile likelihood and
randomized quantile residuals, as well as regression splines and orthogonal
polynomials. Particular features are the use of saddlepoint approximations
to clarify the asymptotical distribution of residual deviances from glms and
an explanation of the relationship between score tests and Pearson statis-
tics. Practical and specific guidelines are developed for the use of asymptotic
approximations.



Preface ix

Throughout this book, r functions are shown in typewriter font fol-
lowed by parentheses; for example, glm(). Operators, data frames and vari-
ables in r are shown in typewriter font; for example, Smoke. r packages
are shown in bold and sans serif font; for example, GLMsData.

We thank those who have contributed to the writing of this book and
especially students who have contributed to earlier versions of this text. We
particularly thank Janette Benson, Alison Howes and Martine Maron for the
permission to use data.

This book was prepared using LATEX and r version 3.4.3 [3], integrated
using Sweave [2].

Sippy Downs, QLD, Australia Peter K. Dunn
Parkville, VIC, Australia Gordon K. Smyth
December 2017
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Chapter 1
Statistical Models

. . . all models are approximations. Essentially, all models
are wrong, but some are useful. However, the approximate
nature of the model must always be borne in mind.
Box and Draper [2, p. 424]

1.1 Introduction and Overview

This chapter introduces the concept of a statistical model. One particular
type of statistical model—the generalized linear model—is the focus of this
book, and so we begin with an introduction to statistical models in gen-
eral. This allows us to introduce the necessary language, notation, and other
important issues. We first discuss conventions for describing data mathemati-
cally (Sect. 1.2). We then highlight the importance of plotting data (Sect. 1.3),
and explain how to numerically code non-numerical variables (Sect. 1.4) so
that they can be used in mathematical models. We then introduce the two
components of a statistical model used for understanding data (Sect. 1.5):
the systematic and random components. The class of regression models is
then introduced (Sect. 1.6), which includes all models in this book. Model
interpretation is then considered (Sect. 1.7), followed by comparing physical
models and statistical models (Sect. 1.8) to highlight the similarities and dif-
ferences. The purpose of a statistical model is then given (Sect. 1.9), followed
by a description of the two criteria for evaluating statistical models: accuracy
and parsimony (Sect. 1.10). The importance of understanding the limitations
of statistical models is then addressed (Sect. 1.11), including the differences
between observational and experimental data. The generalizability of models
is then discussed (Sect. 1.12). Finally, we make some introductory comments
about using r for statistical modelling (Sect. 1.13).

1.2 Conventions for Describing Data

The concepts in this chapter are best introduced using an example.
Example 1.1. A study of 654 youths in East Boston [10, 18, 20] explored the
relationships between lung capacity (measured by forced expiratory volume,
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2 1 Statistical Models

or fev, in litres) and smoking status, age, height and gender (Table 1.1). The
data are available in r as the data frame lungcap (short for ‘lung capacity’),
part of the GLMsData package [4]. For information about this package, see
Appendix B; for more information about r, see Appendix A. Assuming the
GLMsData package is installed in r (see Sect. A.2.4), load the GLMsData
package and the lungcap data frame as follows:

> library(GLMsData) # Load the GLMsData package
> data(lungcap) # Make the data set lungcap available for use
> head(lungcap) # Show the first few lines of data

Age FEV Ht Gender Smoke
1 3 1.072 46 F 0
2 4 0.839 48 F 0
3 4 1.102 48 F 0
4 4 1.389 48 F 0
5 4 1.577 49 F 0
6 4 1.418 49 F 0

(The # character and all subsequent text is ignored by r.) The data frame
lungcap consist of five variables: Age, FEV, Ht, Gender and Smoke. Some
of these variables are numerical variables (such as Age), and some are non-
numerical variables (such as Gender). Any one of these can be accessed indi-
vidually using $ as follows:

> head(lungcap$Age) # Show first six values of Age
[1] 3 4 4 4 4 4
> tail(lungcap$Gender) # Show last six values of Gender
[1] M M M M M M
Levels: F M

Table 1.1 The forced expiratory volume (fev) of youths, sampled from East Boston
during the middle to late 1970s. fev is in L; age is in completed years; height is in inches.
The complete data set consists of 654 observations in total (Example 1.1)

Non-smokers Smokers

Females Males Females Males

fev Age Height fev Age Height fev Age Height fev Age Height

1.072 3 46.0 1.404 3 51.5 2.975 10 63.0 1.953 9 58.0
0.839 4 48.0 0.796 4 47.0 3.038 10 65.0 3.498 10 68.0
1.102 4 48.0 1.004 4 48.0 2.387 10 66.0 1.694 11 60.0
1.389 4 48.0 1.789 4 52.0 3.413 10 66.0 3.339 11 68.5
1.577 4 49.0 1.472 5 50.0 3.120 11 61.0 4.637 11 72.0
1.418 4 49.0 2.115 5 50.0 3.169 11 62.5 2.304 12 66.5
1.569 4 50.0 1.359 5 50.5 3.102 11 64.0 3.343 12 68.0
1.196 5 46.5 1.776 5 51.0 3.069 11 65.0 3.751 12 72.0
1.400 5 49.0 1.452 5 51.0 2.953 11 67.0 4.756 13 68.0
1.282 5 49.0 1.930 5 51.0 3.104 11 67.5 4.789 13 69.0

...
...

...
...

...
...

...
...

...
...

...
...
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The length of any one variable is found using length():
> length(lungcap$Age)
[1] 654

The dimension of the data set is:
> dim(lungcap)
[1] 654 5

That is, there are 654 cases and 5 variables. ��
For these data, the sample size, usually denoted as n, is n = 654. Each

youth’s information is recorded in one row of the r data frame. fev is called
the response variable (or the dependent variable) since fev is assumed to
change in response to (or depends on) the values of the other variables. The
response variable is usually denoted by y. In Example 1.1, y refers to ‘fev
(in litres)’. When necessary, yi refers to the ith value of the response. For
example, y1 = 1.072 in Table 1.1. Occasionally it is convenient to refer to all
the observations yi together instead of one at a time.

The other variables—age, height, gender and smoking status—can be
called candidate variables, carriers, exogenous variables, independent vari-
ables, input variables, predictors, or regressors. We call these variables ex-
planatory variables in this book. Explanatory variables are traditionally de-
noted by x. In Example 1.1, let x1 refer to age (in completed years), and x2
refer to height (in inches). When necessary, the value of, say, x2 for Observa-
tion i is denoted x2i; for example, x2,1 = 46.

Distinguishing between quantitative and qualitative explanatory variables
is essential. Explanatory variables that are qualitative, like gender, are called
factors. Gender is a factor with two levels: F (female) and M (male). Explana-
tory variables that are quantitative, like height and age, are called covariates.

Often, the key question of interest in an analysis concerns the relationship
between the response variable and one or more explanatory variables, though
other explanatory variables are present and may also influence the response.
Adjusting for the effects of other correlated variables is often necessary, so as
to understand the effect of the variable of key interest. These other variables
are sometimes called extraneous variables. For example, we may be inter-
ested in the relationship between fev (as the response variable) and smok-
ing status (as the explanatory variable), but acknowledge that age, height
and gender may also influence fev. Age, height and gender are extraneous
variables.
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Example 1.2. Viewing the structure of a data frame can be informative:
> str(lungcap) # Show the *structure* of the data frame
'data.frame': 654 obs. of 5 variables:
$ Age : int 3 4 4 4 4 4 4 5 5 5 ...
$ FEV : num 1.072 0.839 1.102 1.389 1.577 ...
$ Ht : num 46 48 48 48 49 49 50 46.5 49 49 ...
$ Gender: Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
$ Smoke : int 0 0 0 0 0 0 0 0 0 0 ...

The size of the data frame is given, plus information about each variable: Age
and Smoke consists of integers, FEV and Ht are numerical, while Gender is a
factor with two levels. Each variable can be summarized numerically using
summary():
> summary(lungcap) # Summarize the data

Age FEV Ht Gender
Min. : 3.000 Min. :0.791 Min. :46.00 F:318
1st Qu.: 8.000 1st Qu.:1.981 1st Qu.:57.00 M:336
Median :10.000 Median :2.547 Median :61.50
Mean : 9.931 Mean :2.637 Mean :61.14
3rd Qu.:12.000 3rd Qu.:3.119 3rd Qu.:65.50
Max. :19.000 Max. :5.793 Max. :74.00

Smoke
Min. :0.00000
1st Qu.:0.00000
Median :0.00000
Mean :0.09939
3rd Qu.:0.00000
Max. :1.00000

Notice that quantitative variables are summarized differently to qualitative
variables. FEV, Age and Ht (all quantitative) are summarized with the mini-
mum and maximum values, the first and third quartiles, and the mean and
median. Gender (qualitative) is summarised by giving the number of males
and females in the data. The variable Smoke is qualitative, and numbers are
used to designate the levels of the variable. In this case, r has no way of
determining if the variable is a factor or not, and assumes the variable is
quantitative by default since it consists of numbers. To explicitly tell r that
Smoke is qualitative, use factor():
> lungcap$Smoke <- factor(lungcap$Smoke,

levels=c(0, 1), # The values of Smoke
labels=c("Non-smoker","Smoker")) # The labels

> summary(lungcap$Smoke) # Now, summarize the redefined variable Smoke
Non-smoker Smoker

589 65

(The information about the data set, accessed using ?lungcap, explains
that 0 represents non-smokers and 1 represents smokers.) We notice that
non-smokers outnumber smokers. ��
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1.3 Plotting Data

Understanding the lung capacity data is difficult because there is so much
data. How can the impact of age, height, gender and smoking status on
fev be understood? Plots (Fig. 1.1) may reveal many, but probably not all,
important features of the data:
> plot( FEV ~ Age, data=lungcap,

xlab="Age (in years)", # The x-axis label
ylab="FEV (in L)", # The y-axis label
main="FEV vs age", # The main title
xlim=c(0, 20), # Explicitly set x-axis limits
ylim=c(0, 6), # Explicitly set y-axis limits
las=1) # Makes axis labels horizontal

This r code uses the plot() command to produce plots of the data. (For more
information on plotting in r, see Sect. A.3.10.) The formula FEV ~ Age is read
as ‘FEV is modelled by Age’. The input data=lungcap indicates that lungcap
is the data frame in which to find the variables FEV and Age. Continue by
plotting FEV against the remaining variables:
> plot( FEV ~ Ht, data=lungcap, main="FEV vs height",

xlab="Height (in inches)", ylab="FEV (in L)",
las=1, ylim=c(0, 6) )

> plot( FEV ~ Gender, data=lungcap,
main="FEV vs gender", ylab="FEV (in L)",
las=1, ylim=c(0, 6))

> plot( FEV ~ Smoke, data=lungcap, main="FEV vs Smoking status",
ylab="FEV (in L)", xlab="Smoking status",
las=1, ylim=c(0, 6))

(Recall that Smoke was declared a factor in Example 1.2.) Notice that r
uses different types of displays for plotting fev against covariates (top pan-
els) than against factors (bottom panels). Boxplots are used (by default)
for plotting fev against factors: the solid horizontal centre line in each box
represents the median (not the mean), and the limits of the central box rep-
resent the upper and lower quartiles of the data (approximately 75% of the
observations are less than the upper quartile, and approximately 25% of the
observations are less than the lower quartile). The lines from the central box
extend to the largest and smallest values, except for outliers which are in-
dicated by individual points (such as a large fev for a few smokers). In r,
outliers are defined, by default, as observations more than 1.5 times the inter-
quartile range (the difference between the upper and lower quartiles) more
extreme than the upper or lower limits of the central box.

The plots (Fig. 1.1) show a moderate relationship (reasonably large vari-
ation) between fev and age, that is possibly linear (at least until about 15
years of age). However, a stronger relationship (less variation) is apparent
between fev and height, but this relationship does not appear to be linear.
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Fig. 1.1 Forced expiratory volume (fev) plotted against age (top left), height (top
right), gender (bottom left) and smoking status (bottom right) for the data in Table 1.1
(Sect. 1.3)

The variation in fev appears to increase for larger values of fev also. In gen-
eral, it also appears that males have a slightly larger fev, and show greater
variation in fev, than females. Smokers appear to have a larger fev than
non-smokers.

While many of these statements are expected, the final statement is sur-
prising, and may suggest that more than one variable should be examined at
once. The plots in Fig. 1.1 only explore the relationships between fev and
each explanatory variable individually, so we continue by exploring relation-
ships involving more than two variables at a time.

One way to do this is to plot the data separately for smokers and non-
smokers (Fig. 1.2), using similar scales on the axes to enable comparisons:

> plot( FEV ~ Age,
data=subset(lungcap, Smoke=="Smoker"), # Only select smokers
main="FEV vs age\nfor smokers", # \n means `new line'
ylab="FEV (in L)", xlab="Age (in years)",
ylim=c(0, 6), xlim=c(0, 20), las=1)



1.3 Plotting Data 7

ll

l

l
lllll
l

l

l

l

l

ll

l

l

ll
l

l

l

l

l

l

l lll

ll

l

l

l
ll

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
ll

l
l

l

l

l

l
l

l
l

0 5 10 15 20

0

1

2

3

4

5

6

FEV vs age

for smokers

Age (in years)

FE
V

 (i
n 

L)

l
l
l
l
l
l
l

l
lllll

l
llll

l

l
l ll

ll
l
l
lllll
l

l

l

l
lll

ll
l
l

l

l
lll
ll

l
ll

l

l

ll

l

lll

l
l

l

l

l

l

l
l

l

l

l
ll

l

l
l

l
l
ll
l

l
l

l

l

l
l
l

l

l
l
l
l
l
l
lllllll
l
l

l

l

l
l

l

l
l
ll
l

l
l

ll

l
l
l
ll

l

ll

ll

l

l
l

l
l

lll
ll
l
l

l

l

l

l

l

l
l
l

ll

l

l
l
l

l

l

lll
l

l
l

l

l

l
l
l
l

l

l
l

ll

l
l

l
ll

l

l

lll

l

l
ll
l
l
l

l

l
ll

l
lll
l

l

l
lll
ll

l

l

l

l

l

l

l

l
l

l

l
l

l
l
l

l

l

ll

l

l

l
l
l

l

l
l

l
ll
ll
l
lll

l

l

l

l
ll

l

l

l

l
l
l

l

l
l

l

l

ll

l

l
l
ll

l

l

l
l

l
l

l
l

l

l
l
l

l

l
l

l
l

l

l

l
l

l
l
ll
ll
l
l
l

lll
l
l
llll
l

ll

llllll
ll

l

l

l

l

l

l
l

l

l
ll

l

l

l

ll
l

l

l
l
ll

ll
l

ll

lllll
l

ll
l

ll

lll

ll

lll
ll
l

l

l
ll
l

l

ll

l

l
ll

ll

l
l

l

l
l
l

l
l
l
l
l
ll

l
ll

l
l

l

l
l

l

l

l
l

l

ll
l

ll

l

l
l

l

l

ll

l
ll

l
l

ll
l
ll

l
l

l
l

ll
l
l
ll
l
l

l

l
l

ll
l
l
lll
l

l

ll

l

l

ll

l

l
l

ll

ll

ll

ll
l

lll

l
l

l

l

l

lll

l
l

l

l
l

ll
l
l

l

l

l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l
l

l
l

l

l

l

l

lll

l

l

l
ll

l

l
l

l

l

l

ll
lll

l

l
l
l

l

ll

l

l

l

l
l

l
l
l

l

l

l

l

l

l

l

l

0 5 10 15 20

0

1

2

3

4

5

6

FEV vs age

for non−smokers

Age (in years)

FE
V

 (i
n 

L)

l l

l

l
l l ll l

l

l

l

l

l

ll

l

l

ll
l

l

l

l

l

l

ll ll

ll

l

l

l
ll

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l l

l
l

l

l

l

l
l

l
l

45 50 55 60 65 70 75

0

1

2

3

4

5

6

FEV vs height

for smokers

Height (in inches)

FE
V

 (i
n 

L)

l
l
l
l
l
l
l

l
lll
ll

l
llll

l

l
lll

ll
l
l
lllll

l

l

l

l
lll

ll
l
l

l

l
lll
ll

l
ll

l

l

ll

l

lll

l
l

l

l

l

l

l
l

l

l

l
ll

l

l
l

l
l
ll
l

l
l

l

l

l
l
l

l

l
l
l
l
l
l
lllllll

l
l

l

l

l
l

l

l
l
ll
l

l
l

ll

l
l
l
ll

l

ll

ll

l

l
l

l
l

lll
ll
l
l

l

l

l

l

l

l
l
l

ll

l

l
l
l

l

l

lll
l

l
l

l

l

l
l
l
l

l

l
l

ll

l
l

l
ll

l

l

lll

l

l
ll
l
l
l

l

l
ll

l
lll
l

l

l
lll
ll

l

l

l

l

l

l

l

l
l

l

l
l

l
l
l

l

l

ll

l

l

l
l
l

l

l
l

l
ll
ll
l
lll

l

l

l

l
ll

l

l

l

l
l
l

l

l
l

l

l

ll

l

l
l
ll

l

l

l
l

l
l

l
l

l

l
l

l

l

l
l

l
l

l

l

l
l

l
l
ll
ll

l
l

l

l ll
l
l
llll
l

ll

llllll
ll

l

l

l

l

l

l
l

l

l
ll

l

l

l

ll
l

l

l
l
ll

ll
l

l l

lllll
l

ll
l

ll

lll

ll

lll
ll
l

l

l
ll
l

l

ll

l

l
ll

ll

l
l

l

l
l

l

l
l
l
l
l
ll

l
ll

l
l

l

l
l

l

l

l
l

l

ll
l

ll

l

l
l

l

l

ll

l
ll

l
l

ll
l
ll

l
l

l
l

l l
l
l
ll
l
l

l

l
l

ll
l
l
lll
l

l

ll

l

l

ll

l

l
l

ll

ll

ll

ll
l

lll

l
l

l

l

l

lll

l
l

l

l
l

ll
l
l

l

l

l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l
l

l
l

l

l

l

l

lll

l

l

l
ll

l

l
l

l

l

l

ll
lll

l

l
l
l

l

ll

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

45 50 55 60 65 70 75

0

1

2

3

4

5

6

FEV vs height

for non−smokers

Height (in inches)

FE
V

 (i
n 

L)

Fig. 1.2 Plots of the lung capacity data: the forced expiratory volume (fev) plotted
against age, for smokers (top left panel) and non-smokers (top right panel); and the
forced expiratory volume (fev) plotted against height, for smokers (bottom left panel)
and non-smokers (bottom right panel) (Sect. 1.3)

> plot( FEV ~ Age,
data=subset(lungcap, Smoke=="Non-smoker"), # Only select non-smokers
main="FEV vs age\nfor non-smokers",
ylab="FEV (in L)", xlab="Age (in years)",
ylim=c(0, 6), xlim=c(0, 20), las=1)

> plot( FEV ~ Ht, data=subset(lungcap, Smoke=="Smoker"),
main="FEV vs height\nfor smokers",
ylab="FEV (in L)", xlab="Height (in inches)",
xlim=c(45, 75), ylim=c(0, 6), las=1)

> plot( FEV ~ Ht, data=subset(lungcap, Smoke=="Non-smoker"),
main="FEV vs height\nfor non-smokers",
ylab="FEV (in L)", xlab="Height (in inches)",
xlim=c(45, 75), ylim=c(0, 6), las=1)

Note that == is used to make logical comparisons. The plots show that smok-
ers tend to be older (and hence taller) than non-smokers and hence are likely
to have a larger fev.
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Another option is to distinguish between smokers and non-smokers when
plotting the FEV against Age. For these data, there are so many observa-
tions that distinguishing between smokers and non-smokers is difficult, so we
first adjust Age so that the values for smokers and non-smokers are slightly
separated:
> AgeAdjust <- lungcap$Age + ifelse(lungcap$Smoke=="Smoker", 0, 0.5)

The code ifelse( lungcap$Smoke=="Smoker", 0, 0.5) adds zero to the
value of Age for youth labelled with Smoker, and adds 0.5 to youth labelled
otherwise (that is, non-smokers). Then we plot fev against this variable:
(Fig. 1.3, top left panel):
> plot( FEV ~ AgeAdjust, data=lungcap,

pch = ifelse(Smoke=="Smoker", 3, 20),
xlab="Age (in years)", ylab="FEV (in L)", main="FEV vs age", las=1)

The input pch indicates the plotting character to use when plotting; then,
ifelse( Smoke=="Smoker", 3, 20) means to plot with plotting charac-
ter 3 (a ‘plus’ sign) if Smoke takes the value "Smoker", and otherwise to
plot with plotting character 20 (a filled circle). See ?points for an explana-
tion of the numerical codes used to define different plotting symbols. Recall
that in Example 1.2, Smoke was declared as a factor with two levels that
were labelled Smoker and Non-smoker. The legend() command produces
the legend:
> legend("topleft", pch=c(20, 3), legend=c("Non-smokers","Smokers") )

The first input specifies the location (such as "center" or "bottomright").
The second input gives the plotting notation to be explained (such as the
points, using pch, or the line types, using lty). The legend input provides
the explanatory text. Use ?legend for more information.

A boxplot can also be used to show relationships (Fig. 1.3, top right panel):

> boxplot(lungcap$FEV ~ lungcap$Smoke + lungcap$Gender,
ylab="FEV (in L)", main="FEV, by gender\n and smoking status",
las=2, # Keeps labels perpendicular to the axes
names=c("F:\nNon", "F:\nSmoker", "M:\nNon", "M:\nSmoker"))

Another way to show the relationship between three variables is to use
an interaction plot, which shows the relationship between the levels of two
factors and (by default) the mean response of a quantitative variable. The
appropriate r function is interaction.plot() (Fig. 1.3, bottom panels):
> interaction.plot( lungcap$Smoke, lungcap$Gender, lungcap$FEV,

xlab="Smoking status", ylab="FEV (in L)",
main="Mean FEV, by gender\n and smoking status",
trace.label="Gender", las=1)

> interaction.plot( lungcap$Smoke, lungcap$Gender, lungcap$Age,
xlab="Smoking status", ylab="Age (in years)",
main="Mean age, by gender\n and smoking status",
trace.label="Gender", las=1)
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Fig. 1.3 Plots of the lung capacity data: the forced expiratory volume (fev) plot-
ted against age, using different plotting symbols for non-smokers and smokers (top left
panel); a boxplot of fev against gender and smoking status (top right panel); an inter-
action plot of the mean fev against smoking status according to gender (bottom left
panel); and an interaction plot of the mean age against smoking status according to
gender (bottom right panel) (Sect. 1.3)

This plot shows that, in general, smokers have a larger fev than non-
smokers, for both males and females. The plot also shows that the mean age
of smokers is higher for both males and females.

To make any further progress quantifying the relationship between the
variables, mathematics is necessary to create a statistical model.
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1.4 Coding for Factors

Factors represent categories (such as smokers or non-smokers, or males and
females), and so must be coded numerically to be used in mathematical mod-
els. This is achieved by using dummy variables.

The variable Gender in the lungcap data frame is loaded as a factor by
default, as the data are non-numerical:
> head(lungcap$Gender)
[1] F F F F F F
Levels: F M

To show the coding used by r for the variable Gender in the lungcap data
set, use contrasts():
> contrasts(lungcap$Gender)

M
F 0
M 1

(The function name is because, under certain conditions, the codings are
called contrasts.) The output shows the two levels of Gender on the left, and
the name of the dummy variable across the top. When the dummy variable M
is equal to one, the dummy variable refers males. Notice F is not listed across
the top of the output as a dummy variable, since it is the reference level. By
default in r, the reference level is the first level alphabetically or numerically.
In other words, the dummy variable, say x3, is:

x3 =
{

0 if Gender is F (females)
1 if Gender is M (males).

(1.1)

Since these numerical codes are arbitrarily assigned, other levels may be set
as the reference level in r using relevel():
> contrasts( relevel( lungcap$Gender, "M") ) # Now, M is the ref. level

F
M 0
F 1

As seen earlier in Example 1.2, the r function factor() is used to explicitly
declare a variable as a factor when necessary (for example, if the data use
numbers to designate the factor levels):
> lungcap$Smoke <- factor(lungcap$Smoke,

levels=c(0, 1),
labels=c("Non-smoker","Smoker"))

> contrasts(lungcap$Smoke)
Smoker

Non-smoker 0
Smoker 1
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This command assigns the values of 0 and 1 to the labels Non-smoker and
Smoker respectively:

x4 =
{

0 if Smoke is 0 (non-smoker)
1 if Smoke is 1 (smokers).

(1.2)

For a factor with k levels, k −1 dummy variables are needed. For example,
if smoking status had three levels (for example, ‘Never smoked’, ‘Former
smoker’, ‘Current smoker’), then two dummy variables are needed:

x5 =
{

1 for former smokers
0 otherwise;

x6 =
{

1 for current smokers
0 otherwise.

(1.3)

Then x5 = x6 = 0 uniquely refers to people who have never smoked.
The coding discussed here is called treatment coding. Many types of coding

exist to numerically code factors. Treatment coding is commonly used (and
is used in this book, and in r by default) since it usually leads to a direct
interpretation. Other codings are also possible, with different interpretations
useful in different contexts. In any analysis, the definition of the dummy
variables being used should be made clear.

1.5 Statistical Models Describe Both Random
and Systematic Features of Data

Consider again the lung capacity data from Example 1.1 (p. 1). At any given
combination of height, age, gender and smoking status, many different values
of fev could be recorded, and so produce a distribution of recorded fev
values. A model for this distribution of values is called the random component
of the statistical model. At this given combination of height, age, gender
and smoking status, the distribution of fev values has a mean fev. The
mathematical relationship between the mean fev and given values of height,
age, gender and smoking status is called the systematic component of the
model. A statistical model consists of a random component and a systematic
component to explain these two features of real data. In this context, the role
of a statistical model is to mathematically represent both the systematic and
random components of data.

Many systematic components for the lung capacity data are possible. One
simple systematic component is

μi = β0 + β1x1i + β2x2i + β3x3i + β4x4i (1.4)

for Observation i, where μi is the expected value of yi, so that μi = E[yi]
for i = 1, 2, . . . , n. The βj (for j = 0, 1, 2, 3 and 4) are unknown regression
parameters. The explanatory variables are age x1, height x2, the dummy
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variable x3 defined in (1.1) for gender, and the dummy variable x4 defined
in (1.2) for smoking status. This is likely to be a poor systematic component,
as the plots (Fig. 1.1) show that the relationship between fev and height is
non-linear, for example. Other systematic components are also possible.

The randomness about this systematic component may take many forms.
For example, using var[yi] = σ2 assumes that the variance of the responses
yi is constant about μi, but makes no assumptions about the distribution
of the responses. A popular assumption is to assume the responses have a
normal distribution about the mean μi with constant variance σ2, written
yi ∼ N(μi, σ2), where ‘∼’ means ‘is distributed as’. Both assumptions are
likely to be poor for the lung capacity data, as the plots (Fig. 1.1) show that
the variation in the observed fev increases for larger values of fev. Other
assumptions are also possible, such as assuming the responses come from
other probability distributions beside the normal distribution.

1.6 Regression Models

The systematic component (1.4) for the lung capacity data is one possible rep-
resentation for explaining how the mean fev changes as height, age, gender
and smoking status vary. Many other representation are also possible. Very
generally, a regression model assumes that the mean response μi for Obser-
vation i depends on the p explanatory variables x1i to xpi via some general
function f through a number of regression parameters βj (for j = 0, 1, . . . q).
Mathematically,

E[yi] = μi = f(x1i, . . . , xpi; β0, β1, . . . , βq).

Commonly, the parameters βj are assumed to combine the effects of the
explanatory variables linearly, so that the systematic component often takes
the more specific form

μi = f(β0 + β1x1i + · · · + βpxpi). (1.5)

Regression models with this form (1.5) are regression models linear in the
parameters. All the models discussed in this book are regression models linear
in the parameters. The component β0 +β1x1i + · · ·+βpxpi is called the linear
predictor.

Two special types of regression models linear in the parameters are dis-
cussed in detail in this book:

• Linear regression models: The systematic component of a linear regression
model assumes the form

E[yi] = μi = β0 + β1x1i + · · · + βpxpi, (1.6)
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while the randomness is assumed to have constant variance σ2 about μi.
Linear regression models are formally defined and discussed in Chaps. 2
and 3.

• Generalized linear models: The systematic component of a generalized
linear model assumes the form

μi = g−1(β0 + β1x1i + · · · + βpxpi)
or alternatively: g(μi) = β0 + β1x1i + · · · + βpxpi

where g() (called a link function) is a monotonic, differentiable function
(such as a logarithm function). The randomness is explained by assuming
y has a distribution from a specific family of probability distributions
(which includes common distributions such as the normal, Poisson and
binomial as special cases). Generalized linear models are discussed from
Chap. 5 onwards. An example of a generalized linear model appears in
Example 1.5. Linear regression models are a special case of generalized
linear models.

The following notational conventions apply to regression models linear in the
parameters:

• The number of explanatory variables is p: x1, x2, . . . xp.
• The number of regression parameters is denoted p′. If a constant term β0

is in the systematic component (as is almost always the case) then p′ =
p + 1, and the regression parameters are β0, β1, . . . βp. If a constant term
β0 is not in the systematic component then p′ = p, and the regression
parameters are β1, β2, . . . βp.

Example 1.3. For the lungcap data (Example 1.1, p. 1), a possible systematic
component is given in (1.4) for some numerical values of β0, β1, β2, β3 and
β4, for i = 1, 2, . . . , 654. This systematic relationship implies a linear rela-
tionship between μ and the covariates Age x1 (which may be reasonable from
Fig. 1.1, top left panel), and Height x2, (which is probably not reasonable
from Fig. 1.1, top right panel). The model has p = 4 explanatory variables,
and p′ = 5 unknown regression parameters.

One model for the random component, suggested in Sect. 1.5, was that
the variation of the observations about this systematic component was as-
sumed to be approximately constant, so that var[yi] = σ2. Combining the
two components, a possible linear regression model for modelling the fev is{

var[yi] = σ2 (random component)
μi = β0 + β1x1i + β2x2i + β3x3i + β4x4i (systematic component). (1.7)

Often the subscripts i are dropped for simplicity when there is no ambiguity.
The values of the parameters β0, β1, β2, β3, β4 (for the systematic component)
and σ2 (for the random component) are unknown, and must be estimated.
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This is the model implied in Sect. 1.5, where it was noted that both the
systematic and random components in (1.7) are likely to be inappropriate for
these data (Fig. 1.1). ��
Example 1.4. Some other possible systematic components involving fev (y),
age (x1), height (x2), gender (x3) and smoking status (x4) include:

μ = β0 + β1x1 + β2x2 + β4x4 (1.8)

μ = β0 + β2x2 + β3x2
2 + β4x4 (1.9)

μ = β0 + β1x1 + β2x2 + β3x3 + β4x4 (1.10)
μ = β0 + β1 log x1 + β2x2 + β4x4 (1.11)
μ = β0 + β2x2 + β3x1x2 + β4x4 (1.12)

1/μ = β1x1 + β2x2 + β4x4 (1.13)
log μ = β0 + β1x1 + β2x2 + β4x4 (1.14)

μ = β0 + exp(β1x1) − exp(β2x2) + β4x2
4 (1.15)

All these systematic components apart from (1.15) are linear in the param-
eters and could be used as the systematic component of a generalized linear
model. Only (1.8)–(1.12) could be used to specify a linear regression model.

��
Example 1.5. The noisy miner is a small but aggressive native Australian
bird. A study [11] of the habitats of the noisy miner recorded (Table 1.2; data
set: nminer) the abundance of noisy miners (that is, the number observed;
Minerab) in two hectare transects located in buloke woodland patches with
varying numbers of eucalypt trees (Eucs). To plot the data (Fig. 1.4), a small
amount of randomness is first added in the vertical direction to avoid over
plotting, using jitter():
> data(nminer) # Load the data
> names(nminer) # Show the variables
[1] "Miners" "Eucs" "Area" "Grazed" "Shrubs" "Bulokes" "Timber"
[8] "Minerab"
> plot( jitter(Minerab) ~ Eucs, data=nminer, las=1, ylim=c(0, 20),

xlab="Number of eucalypts per 2 ha", ylab="Number of noisy miners" )

See ?nminer for more information about the data and the other variables.
The random component certainly does not have constant variance, as the

observations are more spread out for a larger numbers of eucalypts. Because
the responses are counts, a Poisson distribution with mean μi for Observa-
tion i may be suitable for modelling the data. We write yi ∼ Pois(μi), where
μi > 0.

The relationship between μ and the number of eucalypts also seems non-
linear. A possible model for the systematic component is E[yi] = μi =
exp(β0 + β1xi), where xi is the number of eucalypt trees at location i. This
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Table 1.2 The number of eucalypt trees and the number of noisy miners observed in
two hectare transects in buloke woodland patches within the Wimmera Plains of western
Victoria, Australia (Example 1.5)

Number of Number of Number of Number of Number of Number of
eucalypts noisy miners eucalypts noisy miners eucalypts noisy miners

2 0 32 19 0 0
10 0 2 0 0 0
16 3 16 2 0 0
20 2 7 0 3 0
19 8 10 3 8 0
18 1 15 1 8 0
12 8 30 7 15 0
16 5 4 1 21 3
3 0 4 0 24 4

12 4 19 7 15 6
11 0
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Fig. 1.4 The number of noisy miners (observed in two hectare transects in buloke wood-
land patches within the Wimmera Plains of western Victoria, Australia) plotted against
the number of eucalypt trees. A small amount of randomness is added to the number of
miners in the vertical direction to avoid over-plotted observations (Example 1.5)

functional form ensures μi > 0, as required for the Poisson distribution, and
may also be appropriate for modelling the non-linearity.

Combining the two components, one possible model for the data, dropping
the subscripts i, is:{

y ∼ Pois(μ) (random component)
μ = exp(β0 + β1x) (systematic component) (1.16)

where μ = E[y]. This is an example of a Poisson generalized linear model
(Chap. 10).
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We also note that one location (with 19 noisy miners) has more than twice
the number of noisy miners observed than the location with the next largest
number of noisy miners (with eight noisy miners). ��

1.7 Interpreting Regression Models

Models are most useful when they have sensible interpretations. Compare
these two systematic components:

μ = β0 + β1x (1.17)
log μ = β0 + β1x. (1.18)

The first model (1.17) assumes a linear relationship between μ and x, and
hence that an increase of one in the value of x is associated with an increase
of β1 in the value of μ. The second model (1.18) assumes a linear relationship
between log μ and x, and hence that an increase of one in the value of x
will increase the value of log μ by β1. This implies that when the value of x
increases by one, μ increases (approximately) by a factor of exp(β1). To see
this, write the second systematic component (1.18) as

μx = exp(β0 + β1x) = exp(β0) exp(β1)x.

Hence if the value of x increases by 1, to x + 1, we have

μx+1 = exp(β0) exp(β1)x+1 = μx exp(β1).

A researcher should consider which is more sensible for the application. Fur-
thermore, models that are based on underlying theory or sensible approxi-
mations to the problem (Sect. 1.10) produce models with better and more
meaningful interpretations. Note that the systematic component (1.17) is
suitable for a linear regression model, and that both systematic components
are suitable for a generalized linear model.
Example 1.6. For the lungcap data, consider a model relating fev y to
height x. Model (1.17) would imply that an increase in height of one inch is
associated with an increase in fev of β1 L. In contrast, Model (1.18) would
imply that an increase in height of one inch is associated with an increase in
fev by a factor of exp(β1) L. ��

A further consideration when interpreting models is when models con-
tain more than one explanatory variable. In these situations, the regression
parameters should be interpreted with care, since the explanatory variables
may not be independent. For example, for the lung capacity data, the age
and height of youth are related (Fig. 1.5): older youth are taller, on average:
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Fig. 1.5 A strong relationship exists between the height and the age of the youth in
the lung capacity data: females (left panel) and males (right panel)

> plot( Ht ~ Age, data=subset(lungcap, Gender=="F"), las=1,
ylim=c(45, 75), xlim=c(0, 20), # Use similar scales for comparisons
main="Females", xlab="Age (in years)", ylab="Height (in inches)" )

> plot( Ht ~ Age, data = subset(lungcap, Gender=="M"), las=1,
ylim=c(45, 75), xlim=c(0, 20), # Use similar scales for comparisons
main="Males", xlab="Age (in years)", ylab="Height (in inches)" )

In a model containing both age and height, it is not possible to interpret both
regression parameters independently, as expecting age to change while height
stays constant is unreasonable in youth. Note that height tends to increase
with age initially, then tends to stay similar as the youth stop (or slow) their
growing.

Further comments on model interpretation for specific models are given as
appropriate, such as in Sect. 2.7.

1.8 All Models Are Wrong, but Some Are Useful

Previous sections introduced regression models as a way to understand data.
However, when writing about statistical models, Box and Draper [2, p. 424]
declared “all models are wrong”. What do they mean? Were they correct? One
way to understand this is to contrast statistical models with some physical
models in common use. For example, biologists use models of the human skele-
ton to teach anatomy, which capture enough important information about the
real situation for the necessary purpose. Models are not an exact representa-
tion of reality: the skeleton is probably made of plastic, not bones; no-one may
have a skeleton with the exact dimensions of the model skeleton. However,
models are useful approximations for representing the necessary detail for
the purpose at hand.
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Similar principles apply to statistical models: they are mathematical ap-
proximations to reality that represent the important features of data for the
task at hand. The complete quote from Box and Draper clarifies [2, p. 424],
“. . . Essentially, all models are wrong, but some are useful. However, the ap-
proximate nature of the model must always be borne in mind”.

Despite the many similarities between physical and statistical models, two
important differences exist:

• A model skeleton shows the structure of an average or typical skeleton,
which is equivalent to the systematic component of a statistical model.
But no-one has a skeleton exactly like the model: some bones will be
longer, skinnier, or a different shape. However, the model skeleton makes
no attempt to indicate the variation that is present in skeletons in the
population. The model skeleton ignores the variation from person to per-
son (the random component). In contrast, the statistical model represents
both the systematic trend and the randomness of the data. The random
component is modelled explicitly by making precise statements about the
random variation (Sect. 1.5).

• Most physical models are based on what is known to be true. Biolo-
gists know what a typical real skeleton looks like. Consequently, knowing
whether a physical model is adequate is generally easy, since the model
represents the important, known features of the true situation. However,
statistical models are often developed where the true model is unknown,
or is only artificially assumed to exist. In these cases, the model must be
developed from the available data.

1.9 The Purpose of a Statistical Model Affects How It
Is Developed: Prediction vs Interpretation

The role of a statistical model is to accurately represent the important sys-
tematic and random features of the data. But what is the purpose of devel-
oping statistical models? For regression models, there are two major motiva-
tions:

• Prediction: To produce accurate predictions from new or future data.
• Understanding and interpretation: To understand how variables relate to

each other.

For example, consider the lung capacity study. The purpose of this study
may be to determine whether there is a (potentially causal) relationship be-
tween smoking and fev. Here we want to understand whether smoking has
an effect on fev, and in what direction. For this purpose, the size and signif-
icance of coefficients in the model are of interest. If smoking decreases lung
function, this would have implications for health policy.
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A different health application is to establish the normal weight range for
children of a given age and gender. Here the purpose is to be able to judge
whether a particular child is out of the normal range, in which case some
intervention by health carers might be appropriate. In this case, a prediction
curve relating weight to age is desired, but the particular terms in the model
would not be of interest. The lung capacity data is in fact an extract from
a larger study [19] in which the pulmonary function of the same children
was measured at multiple time points (a longitudinal study), with the aim of
establishing the normal range for fev at each age.

Being aware of the major purpose of a study may affect how a regression
model is fitted and developed. If the major purpose is interpretation, then
it is important that all terms are reliably estimated and have good support
from the data. If the major purpose is prediction, then any predictor that
improves the precision of prediction may be included in the model, even if the
causal relationship between the predictor and the response is obscure or if
the regression coefficient is relatively uncertain. This means that sometimes
one might include more terms in a regression model when the purpose is
prediction than when the purpose is interpretation and understanding.

1.10 Accuracy vs Parsimony

For any set of data, there are typically numerous systematic components that
could be chosen and various random components may also be possible. How
do we choose a statistical model from all the possible options?

Sometimes, statistical models are based on underlying theory, or from an
understanding of the physical features of the situation, and are built with
this knowledge in mind. In these situations, the statistical model may be
critiqued by how well the model explains the known features of the theoretical
situation.

Sometimes, approximations to the problem can guide the choice of model.
For example, for the lung capacity data, consider lungs roughly as cylinders,
whose heights are proportional to the height of the child, and assume the fev
is proportional to lung volume. Then volume ∝ (radius)2x2 may be a suitable
model. This approach implies fev is proportional to x2, as in Models (1.8)–
(1.11) (p. 14).

Sometimes, statistical models are based on data, often without guiding
theory, and no known ‘true’ state exists with which to compare. After all,
statistical models are artificial, mathematical constructs. The model is a rep-
resentation of an unknown, but assumed, underlying true state. How can we
know if the statistical model is adequate?
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In general, an adequate statistical model balances two criteria:
• Accuracy: The model should accurately describe both the systematic and

random components.
• Parsimony: The model should be as simple as possible.

According to the principle of parsimony (or Occam’s Razor), the simplest
accurate model is the preferred model. In other words, prefer the simplest
accurate model not contradicting the data. A model too simple or too complex
does not model the data well. Complex models may fit the given data well but
usually do not generalize well to other data sets (this is called over-fitting).
Example 1.7. Figure 1.6 (top left panel) shows the systematic component of
a linear model (represented by the solid line) fitted to some data. This model
does not represent the systematic trend of the data. The variation around this
linear model is large and not random: observations are consistently smaller
than the fitted model, then consistently larger, then smaller.

The systematic component of the fitted cubic model (Fig. 1.6, top centre
panel) represents the systematic trend of the data, and suggests a small
amount of random variation about this trend.

The fitted 10th order polynomial (Fig. 1.6, top right panel) suggests a small
amount of randomness, as the polynomial passes close to every observation.
However, the systematic polynomial component incorrectly represents both
the systematic and random components in the data. Because the systematic
component also represents the randomness, predictions based on this model
are suspect (predictions near x = −1 are highly dubious, for example).

The principle of parsimony suggests the cubic model is preferred. This
model is simple, accurate, and does not contradict the data. Researchers
focused only on producing a model passing close to each observation (and
hence selecting the 10th order polynomial) have a poor model. This is called
over-fitting.

The data were actually generated from the model{
y ∼ N(μ, 0.35)
μ = x3 − 3x + 5.

The notation y ∼ N(μ, 0.35) means the responses come from a normal dis-
tribution with mean μ and variance σ2 = 0.35.

Suppose new data were observed from this same true model (for example,
from a new experiment or from a new sample), and linear, cubic and 10th
order polynomial models were refitted to this new data (Fig. 1.6, bottom
panels). The new fitted linear model (Fig. 1.6, bottom left panel) still does
not fit the data well. The new fitted 10th order polynomial (Fig. 1.6, bottom
right panel) is very different compared to the one fitted to the first data
set, even though the data for both were generated from the same model.
In contrast, the new fitted cubic model (Fig. 1.6, bottom centre panel) is
very similar for both data sets, suggesting the cubic model represents the
systematic and random components well. ��
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Fig. 1.6 Three different systematic components for an artificial data set. Left panels:
the data modelled using a linear model; centre panels: using a cubic model; right panels:
using a 10th order polynomial. The lines represent the systematic component of the fitted
model. The top panels show the models fitted to some data; the bottom panels shows the
models fitted to data randomly generated from the same model used to generate the data
in the top panels. A good model would be similar for both sets of data (Example 1.7)

1.11 Experiments vs Observational Studies: Causality
vs Association

All models must be used and understood within limitations imposed by how
the data were collected. The method of data collection influences the con-
clusions that can be drawn from the analysis. An important aspect of this
concerns whether researchers intervene to apply treatments to subjects or
simply observe pre-existing processes.

In an observational study, researchers may use elaborate equipment to
collect physical measures or may ask subjects to respond to carefully de-
signed questionnaires, but do not influence the processes being observed.
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Observational studies generally only permit conclusions about associations
between variables, not a cause-and-effect. While the relationship may in fact
be causal, the use of observational data by itself it not usually sufficient to
confirm this conclusion. In contrast, researchers conducting a designed ex-
periment do intervene to control the values of the explanatory variables that
appear in the data. The distinguishing feature of an experiment versus an
observational study is that the researchers conducting the study are able to
determine which experimental condition is applied to each subject. A well-
designed randomized experiment allows inference to be made about cause-
and-effect relationships between the explanatory and response variables.

Statistical models treat experimental and observational studies in the same
way, and the statistical conclusions are superficially similar, but scientific
conclusions from experiments are usually much stronger. In an observational
study, the best that can be done is to measure all other extraneous variables
that are likely to affect the response, so that the analysis can adjust for as
many uncontrolled effects as possible. In this way, good quality data and
careful statistical analysis can go a long way towards correcting for many
influences that cannot be controlled in the study design.
Example 1.8. The lung capacity data (Example 1.1) is a typical observational
study. The purpose of the study is to explore the effects of smoking on lung
capacity, as measured by fev (explored later in Problem 11.15). Whether or
not each participant is a smoker is out of the control of the study designers,
and there are many physical characteristics, such as age and height, that
have direct effects on lung capacity, and some quite probably have larger
effects than the effect of interest (that of smoking). Hence it was necessary
to record information on the height, age and gender of participants (which
become extraneous variables) so that the influence of these variables can be
taken into account. The aim of the analysis therefore is to try to measure the
association between smoking and lung capacity after adjusting for age, height
and gender. It is always possible that there are other important variables that
influence fev that have not been measured, so any association discovered
between fev and smoking should not be assumed to be cause-and-effect. ��

1.12 Data Collection and Generalizability

Another feature of data collection that affects conclusions is the population
from which the subjects or cases are drawn. In general, conclusions from
fitting and analysing a statistical model only apply to the population from
which the cases are drawn. So, for example, if subjects are drawn from women
aged over 60 in Japan, then conclusions do not necessarily apply to men, to
women in Japan aged under 60, or to women aged over 60 elsewhere.
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Similarly, the conclusions from a regression model cannot necessarily be
applied (extrapolated) outside the range of the data used to build the model.

Example 1.9. The lung capacity data (Example 1.1) is from a sample of
youths from the middle to late 1970s in Boston. Using the results to infer
information about other times and locations may or may not be appropri-
ate. The study designers might hope that Boston is representative of much
of the United States in terms of smoking among youth, but generalizing the
results to other countries with different lifestyles or to the present day may
be doubtful.

The youths in the fev study are aged from 3 to 19. As no data exists
outside this age range, no statistical model can be verified to apply outside
this age range. In the same way, no statistical model applies for youth under
46 inches tall or over 74 inches tall. fev cannot be expected to increase
linearly for all ages and heights. ��

1.13 Using R for Statistical Modelling

A computer is indispensable in any serious statistical work for performing the
necessary computations (such as estimating the values of βj), for producing
graphics, and for evaluating the final model.

Although the theory and applications of glms discussed throughout this
book apply generally, the implementation is possible in various statistical
computer packages. This book discusses how to perform these analyses using
r (all computations in this book are performed in r version 3.4.3). A short
introduction to using r is given in Appendix A (p. 503).

This section summarizes and collates some of the relevant r commands
introduced in this chapter. For more information on some command foo,
type ?foo at the r command prompt.

• library(): Loads extra r functionality that is contained in an r package.
For example, use library(GLMsData) to make the data frames associated
with this book available in r. See Appendix B (p. 525) for information
about obtaining and installing this package.

• data(): Loads data frames.
• names(x): Lists the names of the variables in the data frame x.
• summary(object): Produces a summary of the variable object, or of the

data frame object.
• factor(x): Declares x as a factor. The first input is the variable to be

declared as a factor. Two further inputs are optional. The second (op-
tional) input levels is the list of the levels of the factor; by default the
levels of the factor are sorted by numerical or alphabetical order. The
third (optional) input labels gives the labels to assign to the levels of
the factor in the order given by levels (or the order assumed by default).
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• relevel(x, ref): Changes the reference level for factor x. The first in-
put is the factor, and the second input ref is the level of the factor to
use as the reference level.

• plot(): Plots data. See Appendix A.3.10 (p. 516) for more information.
• legend(): Adds a legend to a plot.

1.14 Summary

Chapter 1 introduces the idea of a statistical model. In this context, y refers
to the response variable, n to the number of observations, and x1, x2, . . . , xp

to the p explanatory variables. Quantitative explanatory variables are called
covariates; qualitative explanatory variables are called factors (Sect. 1.2). Fac-
tors must be coded numerically for use in statistical models (Sect. 1.4) using
dummy variables. Treatment codings are commonly used, and are used by
default in r. k − 1 dummy variables are required for a factor with k levels.

Plots are useful for an initial examination of data (Sect. 1.3), but statistical
models are necessary for better understanding. Statistical models explain the
two components of data: The systematic component models how the mean
response changes as the explanatory variables change; the random component
models the variation of the data about the mean (Sect. 1.5). In this way,
statistical models represent both the systematic and random components
of data (Sect. 1.8), and can be used for prediction, and for understanding
relationships between variables (Sect. 1.9). Two criteria exist for an adequate
model: simplicity and accuracy. The simplest model that accurately describes
the systematic component and the randomness is preferred (Sect. 1.10).

Regression models ‘linear in the parameters’ have a systematic component
of the form E[yi] = μi = f(β0+β1x1i+· · ·+βpxpi) (Sect. 1.6). In these models,
the number of regression parameters is denoted p′. If a constant term β0 is
in the systematic component, as is almost always the case, then p′ = p + 1;
otherwise p′ = p (Sect. 1.6).

Statistical models should be able to be sensibly interpreted (Sect. 1.7).
However, fitted models should be interpreted and understood within the lim-
itations of the data and of the model (Sect. 1.11). For example: in observa-
tional studies, data are simply observed, and no cause-and-effects conclusions
can be drawn. In experimental studies, data are produced when the researcher
has some control over the values of at least some of the explanatory variables
to use; cause-and-effect conclusions may be drawn (Sect. 1.11). In general,
conclusions from fitting and analysing a statistical model only apply to the
population represented by the sample (Sect. 1.12).

Computers are invaluable in statistical modelling, especially for estimating
parameters and graphing (Sect. 1.13).
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Problems

Selected solutions begin on p. 529.
1.1. The plots in Fig. 1.7 (data set: paper) show the strength of Kraft pa-
per [7, 8] for different percentages of hardwood concentrations. Which sys-
tematic component, if any, appears most suitable for modelling the data?
Explain.
1.2. The plots in Fig. 1.8 (data set: heatcap) show the heat capacity of solid
hydrogen bromide y measured as a function of temperature x [6, 16]. Which
systematic component, if any, appears best for modelling the data? Explain.
1.3. Consider the data plotted in Fig. 1.9. In the panels, quadratic, cubic and
quartic systematic components are shown with the data. Which systematic
component appears best for modelling the data? Explain.

The data are actually randomly generated using the systematic component
μ = 1 + 10 exp(−x/2) (with added randomness), which is not a polynomial
at all. Explain what this demonstrates about fitting systematic components.
1.4. Consider the data plotted in Fig. 1.10 (data set: toxo). The data show
the proportion of the population y testing positive to toxoplasmosis against
the annual rainfall x for 34 cities in El Salvador [5]. Analysis suggests a cubic
model fits the data reasonably well (though substantial variation still exists).
What important features of the data are evident from the plot? Which of the
plotted systematic components appears better? Explain.

1.5. For the following systematic components used in a regression model,
determine if they are appropriate for regression models linear in the parame-
ters, linear regression models, and/or generalized linear models. In all cases,
βj refers to model parameters, μ is the expected value of the response vari-
able, while x, x1 and x2 refer to explanatory variables.
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Fig. 1.7 Three different systematic components for the Kraft paper data set: fitted
quadratic, cubic and quartic systematic components are shown (Problem 1.1)
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Fig. 1.8 Plots of the heat capacity data: fitted linear, quadratic, cubic and quartic
systematic components are shown (Problem 1.2)
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Fig. 1.9 Three different systematic components for a data set: fitted quadratic, cubic
and quartic systematic components are shown (Problem 1.3)

1. μ = β0 + β1x1 + β2 log x2.
2. μ = β0 + exp(β1 + β2x).
3. μ = exp(β0 + β1x) for μ > 0.
4. μ = 1/(β0 + β1x1 + β2x1x2) for μ > 0.
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Fig. 1.10 The toxoplasmosis data, and two fitted cubic systematic components
(Problem 1.4)

1.6. Load the data frame turbines from the package GLMsData. Briefly, the
data give the proportion of turbines developing fissures after a given number
of hours of run-time [13, 14].

1. Use names() to determine the names of the variables in the data frame.
2. Determine which variables are quantitative and which are qualitative.
3. For any qualitative variables, define appropriate dummy variables using

treatment coding.
4. Use r to summarize each variable.
5. Use r to create a plot of the proportion of failures (turbines with fissures)

against run-time.
6. Determine the important features of the data evident from the plot.
7. Would a linear regression model seem appropriate for modelling the data?

Explain.
8. Read the help for the data frame (use ?turbines after loading the

GLMsData package in r), and determine whether the data come from
an observational or experimental study, then discuss the implications.

1.7. Load the data frame humanfat. Briefly, the data record the percentage
body fat y, age, gender and body mass index (bmi) of 18 adults [12]. The
relationship between y and bmi is of primary interest.

1. Use names() to determine the names of the variables in the data.
2. Determine which variables are quantitative and which are qualitative.

Identify which variables are extraneous variables.
3. For any qualitative variables, define appropriate dummy variables using

treatment coding.
4. Use r to summarize each variable.
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5. Plot the response against each explanatory variable, and discuss any im-
portant features of the data.

6. Would a linear regression model seem appropriate for modelling the data?
Explain.

7. Read the help for the data frame (use ?humanfat after loading the
GLMsData package in r), and determine whether the data come from
an experiment or observational study. Explain the implications.

8. After reading the help, determine the population to which the results can
be expected to generalize.

9. Suppose a linear regression model was fitted to the data with systematic
component μ = β0 + β1x1, where x1 is bmi. Interpret the systematic
component of this model.

10. Suppose a generalized linear model was fitted to the data with system-
atic component log μ = β0 + β1x1 + β2x2, where x1 is bmi, and x2 is 0
for females and 1 for males. Interpret the systematic component of this
model.

11. For both models given above, determine the values of p and p′.

1.8. Load the data frame hcrabs. Briefly, the data give the number of male
satellite crabs y attached to female horseshoe crabs of various weights (in g),
widths (in cm), colours and spine conditions [1, 3].

1. Determine which variables are quantitative and which are qualitative.
2. For any qualitative variables, define appropriate dummy variables using

treatment coding.
3. Use r to summarize each variable.
4. Produce appropriate plots to help understand the data.
5. Find the correlation between weight and width, and comment on the

implications.
6. Read the help for the data frame (use ?hcrabs after loading package

GLMsData in r), and determine whether the data come from an exper-
iment or observational study. Explain the implications.

7. After reading the help, determine the population to which the results can
be expected to generalize.

8. Suppose a linear regression model was fitted to the data with systematic
component μ = β0 + β1x1, where x1 is the weight of the crab. Interpret
the systematic component of this model. Comment on the suitability of
the model.

9. Suppose a generalized linear model was fitted to the data with systematic
component log μ = β0+β1x1, where x1 is the weight of the crab. Interpret
the systematic component of this model. Comment on the suitability of
the model.

10. For the model given above, determine the values of p and p′.

1.9. Children were asked to build towers as high as they could out of cubical
and cylindrical blocks [9, 17]. The number of blocks used and the time taken
were recorded.
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1. Load the data frame blocks from the package GLMsData, and produce
a summary of the variables.

2. Produce plots to examine the relationship between the time taken to
build towers, and the block type, trial number, and age.

3. In words, summarize the relationship between the four variables.
4. Produce plots to examine the relationship between the number of blocks

used to build towers, and the block type, trial number, and age.
5. Summarize the relationship between the four variables in words.

1.10. In a study of foetal size [15], the mandible length (in mm) and gesta-
tional age for 167 foetuses were measured from the 15th week of gestation
onwards. Load the data frame mandible from the package GLMsData, then
use r to create a plot of the data.

1. Determine the important features of the data evident from the plot.
2. Is a linear relationship appropriate? Explain.
3. Is a model assuming constant variation appropriate? Explain.
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