Zuur Ch 02 part 1 slides

Ed Harris 26/03/2020

Ch 02 outline

- -Learn as you go philosophy
- -Data exploration
- -Linear regression modelling
- -Linear regression assumptions

2.1 Data exploration

Nereis data

here I think: concentration (numeric) nutrient concentration biomass (numeric) polychaete biomass nutrient (factor) nutrient type - reads in as numeric but is actually a cetegorical factor

##		concentration	biomass	nutrient
##	1	0.050	0.0	1
##	2	0.105	0.0	1
##	3	0.105	0.0	1
##	4	0.790	0.5	1
##	5	0.210	0.5	1
##	6	2.100	0.5	1

Fig 2.1 (modified)

```
par(mfrow = c(1,2))
Nereis <- read.table(file = "Nereis.txt", header = T)
dotchart(Nereis$concentration, groups = factor(Nereis$nutrient),
    ylab = "Nutrient",xlab = "Concentration",
    main = "Clevelanddotplot", pch = Nereis$nutrient)</pre>
```


Clevelanddotplot

Fig 2.2 pairs plot

Fig 2.3 Boxplot

2.2 Your old buddy the linear model

$$Y_i = lpha + eta imes X_i + \epsilon_i$$

 Y_i = dependent var X_i = explanatory var α and β = intercept and slope ϵ_i = residual error

 $\epsilon_i \sim N(0,\sigma^2)$

Assumption the residual error is Gaussian with expected value = 0, variance = σ^2

The "magic of assumptions"

-assume Gaussian residual error
-homoscedasity of error
-no weird values
RIKZ data, R = spp richness, NAP = tide height
P = probability density

2.3 Violate those assumptions

Vanilla linear model full assumptions

-Gaussian residuals

-Homogeneous variance

-"fixed" X (discuss briefly)

-Independence

-Correct model specification...

2.3.2 Gaussian residuals

"the underlying concept of normality is grossly misunderstood by many researchers. The linear regression model requires normality of the data, and therefore of the residuals at *each X* value"

Important but is it black and white? (Sokal and Rohlf, 1995; Zar, 1999)

2.3.3 Heterogeneity

"heterogeneity (violation of homogeneity), also called heteroscedasticy, happens if the spread of the data is not the same at each X value, and this can be checked by comparing the spread of the residuals for the different X values"

2.3.3 Heterogeneity

"heterogeneity (violation of homogeneity), also called heteroscedasticy, happens if the spread of the data is not the same at each X value, and this can be checked by comparing the spread of the residuals for the different X values"

Fixed X

-Concept of fixed versus random "effects"

-Explanatory variables are fixed if:1) experimentally assigned2) low error in sample estimate relative to pop'n

-Can be serious (ref to Faraway 2005)

Independence

This is the most serious of violated assumptions in linear models and is very, very common too.

2 related causes:

-Dependence structure inherent in the model (e.g. multiple samples in a plot)

-Other dependence in the data (e.g. measuring growth at multiple points in time)

NB we fix this with a mixed effects model...

Donax hanleyanus Uruguay, Rocha, Aguas-Dulces NMR 17634. Actual size 26 mm

Clams <- read.table("Clams.txt", header = T)
str(Clams)</pre>

Month - month of measurement Length - length (mm?) AFD - weight LNLENGTH - log(Length) LMAFD - log(AFD)

models: LNAFN ~ LNLENGTH + MONTH LNAFN ~ LNLENGTH * MONTH

```
Clams$MONTH <- factor(Clams$MONTH)
M1 <-lm(LNAFD ~ LNLENGTH * MONTH, data = Clams)
drop1(M1, test = "F")</pre>
```

```
## Single term deletions
##
## Model:
## LNAFD ~ LNLENGTH * MONTH
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 6.4490 -1616.8
## LNLENGTH:MONTH 5 0.20328 6.6523 -1614.4 2.4334 0.03444 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

2.3.6 wedge clam model validation